Impact of waste dump on groundwater quality in humid Tropics of Nigeria

¹UZOIGWE, L. O, ²MADUAKOLAM, S.C AND ³IZUKA, S. U

1,2, 3 Faculty of Engineering, Department of Agricultural Engineering, Imo State University Owerri, Nigeria.

ABSTRACT: Physical, chemical/heavy metal and bacteriological/biological analyses of water samples from three boreholes (W_1 , 120m; W_2 , 60m and W_3 , 45m) located near a dumpsite at Bishop's Court, Amah-wire were compared with the limits of WHO and NSDWQ. The results from the physio-chemical analysis revealed that temperature was above the set minimum limits of WHO and NSDWQ, while a pH range of 5.01 to 5.85 indicated that all three wells were acidic. The percentage compliance of W_1 , W_2 and W_3 , showed that pH for all three wells had a compliance level <100%. Mn, Cu, NO₂, Pb, Cr, Cd, and Fe concentration of all three wells exceeded the limits of WHO and NSDWQ. With the exception of PO_4^{3-} , SO_4^{2-} and NO₃ which were 100% compliant, other chemical parameters were below 100%. Total Coliform Count (TCC) and Total Bacteria Count (TBC) were > 1 in W_2 and W_3 , except in W_1 , were TCC was 1. DO level of W_3 was lower compared to W_1 and W_2 . The Biochemical Oxygen Demand at day 5 (BOD₅) and Chemical Oxygen Demand (COD) for W_3 were higher, indicating that the pollution strength increased towards the dumpsite. Based on these findings, it is observed that solid waste dump has a direct impact on groundwater quality and should be discouraged.

Keywords: Dumpsite, physio-chemical, bacteriological, WHO/NSDWQ and groundwater

I. INTRODUCTION

Water on the earth can be said to be enormous in quantity when it is considered that more than two-thirds of the earth surface is covered by water (Abdulaziz, 2003). It is however, not sufficient merely to have access to water in adequate quantities, the water also needs to be of adequate quality to maintain health and it must be free from harmful biological and chemical contamination. Dauda (1993) noted that as surface water becomes increasingly polluted, people turn to groundwater for alternative supplies. This alternative source however, is becoming unsafe for human consumption due to increasing rate of pollution. The development and efficient management of groundwater resources is of particular concern in Africa especially in humid tropics of Nigeria in which groundwater accounts for 80% of its water supply, as not only are there relative scarcity of water resources and quality degradation, but also face high evaporation rates and high levels of anticipated future demands (Offodile, 2002).

The goal of all countries is to increase economic production as it is generally thought that this will result in a better life for the citizens. In as much as the population of the country is growing, it is likely that the total use of water will increase. The availability of water for use depends to a large extent on the increase in population and their activities. In an attempt to meet man's basic needs he engages in different activities extracting environmental resources and releasing the waste products to the physical environment. With competing demands on limited water resources, awareness of the issues involved in water pollution, has led to a great concern about the environmental effects of uncontrolled waste disposal. Water resources are threatened in three ways by human activities in the watershed. Firstly, the quantity of water available for supply is reduced by activities that decreases the infiltration of water into the ground (e.g., urban pavement) or channel water away quickly before it can infiltrate (e.g., urban and rural drainage). Secondly, the future availability of water supply is threatened by overuse such as excessive demand, inefficient water use, and inappropriate allocation. Thirdly, the quality of water available for water supply is threatened by pollution from both point and non-point sources.

The major problem in the global content is water pollution. It is the leading world-wide cause of deaths and diseases. It accounts for the death of more than 14,000 people daily. More recently, environmental concerns have led water managers to acknowledge the water needs of aquatic/fishing functions and wetland functions, in effect representing other competing users of the water resource. According to Longe and Balogun, (2010), groundwater pollution in Nigeria is mainly due to the process of industrialization and urbanization that has progressively

developed over time without regard for environmental consequences. An increase in population as well as increase in industrialization and technological revolution has resulted in the increase in waste generation with the resultant production of wastes which have become increasingly complex to manage and control. The impact of solid wastes in recent times, on groundwater and other water resources has attracted a lot of attention because of its overwhelming environmental significance. These wastes migrates from wastes sites or landfills and releases pollutants that pose a high risk to groundwater resource if not adequately managed (Ikem et al., 2002).

In Nigeria, open dump is almost the verily available option for solid wastes disposal, even in the capital cities. Sanitary landfill, however, is rare and unpopular, except perhaps among few institutions and few affluent people. The practice of landfill system as a method of waste disposal in Nigeria is usually far from standard recommendations (Adewole, 2009). According to Lee and Lee, (2005) instances have shown that landfills have been inadequate in the prevention of groundwater contamination. The immediate identifiable reasons for this in Nigeria are weak or underfinanced and rapid population explosion. Other reasons include the issue of inappropriate guidelines for sitting, designing and operation of new landfills as well as missing recommendations for possible upgrading options of existing open dumps. The available guidelines for landfills are those from high-income countries, and they are based on technological standards and practices suited to the conditions and regulations of the source countries, they often do not take into account the different technical, economical, social and institutional aspects of developing country such as Nigeria. Also, many of the municipal officials think that uncontrolled waste disposal is the cheapest and best possible way of disposal of waste. Thus, for better understanding, it is of paramount importance that the pollutants of water resources of which solid waste is the most critical need be understood. Protection of groundwater is therefore, a major environmental issue since the importance of water quality on human health has attracted a great deal of concern lately and thus, can never be over-emphasized.

Study Area

II. MATERIALS AND METHODS

The study area with Longitude N005°30.693', Latitude E007°02.886', and Elevation 417ft as shown in Figures 1, 2a & b, is located within Owerri Municipal Local Government Area Council of Imo State, a case study for Nigerian conditions. The climate of Owerri Municipal and its environs, although comparatively stable is not uniform. Typically, the regions have the characteristic features of the humid tropical wet and dry climate governed primarily by the rainfall. There are two distinct seasons, rainy season which is from March to October and the dry season which begins in November and terminates in April. This region consists of mainly residential buildings, students' hostels and departmental stores. From investigations gathered, it was observed that the dumpsite had been in existence for over ten years and it is the only available option for solid wastes disposal. Observations from the dumpsite revealed that the wastes comprise mainly of nylon, empty food cans, empty aerosol can, and organic wastes, disposed lead accumulators and voltaic cells etc thus, resulted to ill health of some of the occupants. This purely indicated the level of pollution of groundwater by indiscriminate dumping of waste at the referenced area.

Figure 1: Map of the study area

Figure 2a and b: Dumpsites

Sampling method and data collection

Samples were collected randomly from three different borehole wells at 120m, 60m and 45m respectively from the dump site using clean water bottles. The water samples collected were labeled W_1 , W_2 and W_3 respectively. These wells were chosen because the portion of water obtained will give the concentration of constituent of the water as well as show the extent and impact of pollution at the dump site on groundwater within the area. The samples collected were taken to the Imo State Environmental Protection Agency (ISEPA) Laboratory for analysis.

III. MATERIALS

Portable data logging spectrophotometer (DR/2010), Dissolved oxygen (DO) analyzer (JB-607 Portable), Conductivity/TDS meter – DiST3 (HI98303), Electronic weighing chemical balance (ADG 5000), Suntex pH/ Temperature meter (SP-701), Incubator, Autoclave, Conical flask, Beaker, Measuring cylinder (50ml, 250ml), Sample cell bottle (10ml, 25ml), Glass rod/ stirrer, Petri-dish, Spatula, Glass stopper, De-ionized water, Buffer 7 and buffer 4 solution, NitraVer 5 reagent powder pillow, FerrorVer reagent powder pillow, Nutrient Agar (NA), Mac Conkey Agar (MAC), DithiVer metal reagent powder pillow, Buffer powder pillow (citrate type), Sodium periodate powder pillow, PbEX3 Eluate buffer pillow, and CuVer I reagent powder pillow.

IV. METHOD

Experiments on the samples collected were carried out to determine the physio-chemical (i.e. physical and chemical) and biological characteristics of the water. The physical parameters investigated for were Colour, TSS, Turbidity, pH, Temperature and Conductivity. The chemical parameters include Phosphate, Iron, manganese, Copper, Nitrate, Sulphate, Chromium, Cadmium, and Lead while the biological characteristics investigated are TBC, TCC, DO, COD and BOD.

Parameter	Wavelength (nm)	Program number						
Physical parameters, their respective wavelength and program number								
Colour	455	120						
TSS	810	630						
Turbidity	860	750						
pН	-	-						
Temperature	-	-						
Electrical conductivity	-	-						
Chemical/heavy metal parameters, their respective wavelength and program number								
Phosphate	890	490						
Iron	510	265						

 Table: Parameters, their respective wavelengths and program numbers

Table	1 continues	•••••
Manganese	525	295
Copper	560	135
Nitrate	400	353
Nitrite	585	373
Sulphate	450	680
Chromium	540	90
Cadmium	515	90
Lead	515	90

Source: Imo State Environmental Protection Agency Laboratory (ISEPA, 2012)

Table 2:	Biological/bact	eriological para	ameters, their	medium and	l equipment us	sed
----------	------------------------	------------------	----------------	------------	----------------	-----

Parameter	Equipment	Medium
Dissolved Oxygen (DO)	DO Analyzer	-
Chemical Oxygen Demand (COD)	-	-
Biochemical Oxygen Demand (BOD₅)	-	-
Total Coliform Count (TCC)	-	Mac Conkey Agar (MA)
		Nutrient Agar (NA)
Total Bacterial Count (TBC)	-	Mac Conkey Agar (MA)
		Nutrient Agar (NA)

Results

IV. RESULTS AND DISCUSSION

The results of the laboratory analysis of the water samples (i.e. samples W_1 , W_2 and W_3 respectively), gathered from the physical, chemical and biological analysis are given in Table 3. These results were compared with the World Health Organization (WHO) and Nigerian Standard for Drinking Water Quality (NSDWQ).

Physical Analysis							
Parameters	Sample W ₁ (120m)	Sample W ₂ (60m)	SampleW ₃ (45m)				
Physical appearance	Clear	Clear	Clear				
Odour	Unobjectionable	Unobjectionable	Unobjectionable				
Taste	Unobjectionable	Unobjectionable	Unobjectionable				
Colour (pt-Co)	13.0	11.10	11.50				
TSS (mg/l)	3	4	4.48				
Turbidity (NTU)	4	4.05	4.50				
рН	5.85	5.32	5.01				
Temperature (°C)	27.4	27.6	28.0				
Conductivity (EC) (µs/cm)	17.00	16.80	17.30				
TDS (mg/l)	11.05	12.50	12.78				
	Chemical/Heavy Metals	Analysis					
	(all units are in <i>mg</i>	ŋ/l)					
Iron (Fe)	0.46	2.40	3.50				
Manganese (Mn)	1.1	3.60	3.95				
Phosphate	1.78	4.85	5.45				
Copper (Cu)	1.50	2.50	2.72				
Sulphate (SO ₄ ²⁻)	11	16	19				
Chromium (Cr ⁶⁺)	0.58	0.62	0.665				
Nitrate (NO ₃)	0.60	0.78	0.885				
Nitrite (NO ₂)	2.0	4.0	4.8				
Lead (Pb)	0.045	0.095	0.113				
Cadmium (Cd)	0.022	0.136	0.251				

Biological/Bacteriological Analysis							
$BOD_5 (BOD_5 = DO_1 - $	0.83	1.50	2.4				
DO_5 (mg/l)							
$DO_1(mg/l)$	7.2	6.50	6.03				
$\mathrm{DO}_5\left(mg/l ight)$	6.37	5.0	3.63				
$COD(COD = 1.6 \times BOD_5)$	1.33	2.4	3.84				
(mg/l)							
TBC (<i>Cfu</i> /100 <i>ml</i>)	2	2	3				
TCC/E.coli inclusive (<i>Cfu</i> /	1	3	3				
100 <i>ml</i>)							

Comparison of water samples with WHO and NSDWQ standards

To ascertain the extent of pollution, the results from the laboratory analysis of the water samples were compared with the WHO and NSDWQ standards. Tables 4, 5 and 6 give the respective comparison of the physical, chemical and biological characteristics of the water samples with the WHO and NSDWQ standards.

Table 4: Physical characteristic	es of water samples as compa	ared with WHO and	NSDWQ standards
	1 1		C C

				1			
Sample	Colour	TSS	pН	Turb.	Temp.	EC	TDS
	(Pt-Co)	(mg/l)		(NTU)	(°C)	(<i>µs/cm</i>)	(mg/l)
WHO	15	50	6.5-8.5	5	20-30	1000	250
NSDWQ	15	50	6.5-8.5	5	20-30	1000	100
W ₁ (120m)	13	3	5.85	4.0	27.4	17.00	11.05
W ₂ (60m)	11.10	4	5.32	4.05	27.6	16.80	12.50
W ₃ (45m)	11.50	4.48	5.01	4.50	28.0	17.30	12.78
Range	11.10-13	3 - 4.48	5.01-5.85	4.0-4.5	27.4-28.0	16.8-17.3	11.05-12.78
Variance	0	0	<0.65 - 1.49	0	0	0	0
		TI in	1:				

pH is dimensionless

Table 5: Chemical/heavy metals constituents of water samples and their comparison with WHO and NSDWO standards

Sample	Phos.	Fe	Mn	Cu	NO ₃	NO ₂	SO4 ²⁻	Cr ⁶⁺	Cd	Pb
WHO	5	0.3	0.1	1.0	40	0.91	250	0.05	0.003	0.01
NSDWQ	5	0.3	0.2	1.0	50	0.2	100	0.05	0.003	0.01
W ₁ (120m)	1.78	0.46	1.1	1.50	0.60	2.0	11	0.58	0.022	0.045
W ₂ (60m)	4.85	2.40	3.60	2.50	0.78	4.0	16	0.62	0.136	0.095
W ₃ (45m)	5.45	3.50	3.95	2.72	0.885	4.8	19	0.665	0.25	0.113
Range	1.78-	0.46-3.5	1.1-	1.5 -	0.6 -	2.0 -	11-19	0.58 -	0.022-	0.045-
_	5.45		3.95	2.72	0.885	4.8		0.665	0.25	0.113
Variance	>0.45	>0.16 -	>3.4 -	>0.5 -	0	>1.09 -	0	>0.53 -	>0.019-	>0.035 -
		3.2	3.85	1.72		4.6		0.615	0.247	0.103

All dimensions are in mg/l

Table 6: Biological/bacteriological constituents of water samples and their comparison With WHO and NSDWO standards

Sample	BOD ₅	DO	COD	TBC (<i>Cfu</i> /100 <i>ml</i>)	TCC (<i>Cfu</i> /100 <i>ml</i>)
WHO	50	NS	80	3	0
NSDWQ	50	NS	80	10	0
W ₁ (120m)	0.83	7.2	1.33	2	1
W ₂ (60m)	1.5	6.5	2.4	2	3
W ₃ (45m)	2.4	6.03	3.84	3	3
Range	0.83-2.4	6.03-7.2	1.33-3.84	2 - 3	1-3
Variance	Within	-	Within limit	Slight contamination	+3, indicating the water is
	limit				contaminated

All dimensions are in mg/l, unless otherwise stated, NS – Not Specified Source of Tables (4 to 6): WHO (Garg, 2007) and NSDWQ (SON, 2007) standards

Percentage compliance of the water samples

To ascertain the percentage compliance of the laboratory analysis results of the water samples obtained with WHO and NSDWQ, simple percentage technique was adopted. The percentage compliance obtained was then represented using a bar chart. It is worthy to note however that in the calculation of the percentage compliance, the following procedures were adopted:

(i) For parameters with range i.e. pH and temperature etc., having values below the minimum required value,

$$\% \ compliance = \frac{experimental \ value}{minimum \ limit \ value} \times 100$$
(1)
For parameters with range having values above the minimum required value,
$$\% \ compliance = \frac{maximum \ limit \ value}{experimental \ value} \times 100$$
(2)

(iii) For parameters having only maximum allowable limit value, Equation (2) is used.

(iv) Percentage value higher than 100 is considered as 100%.

Estimation of the percentage compliance of the water samples

For Temperature:

(ii)

% compliance = $\frac{\text{maximum limit value}}{100} \times 100$ experimental value Since WHO and NSDWQ limits for temperature are the same (i.e. 20 - 30°C); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 30° C Experimental value for $W_1 = 27.4$ °C, Experimental value for $W_2 = 27.6$ °C Experimental value for $W_3 = 28^{\circ}C$ ∴ WHO% compliance for W₁ = NSDWQ % compliance for W₁ = $\frac{30}{27.4} \times 100 = 109 \approx 100\%$ WH0% compliance for $W_2 = NSDWQ$ % compliance for W_2 $= \frac{30}{27.6} \times 100 = 108 \approx 100\%$ WHO% compliance for W₃ = NSDWQ % compliance for W₃ $=\frac{30}{28} \times 100 = 107 \approx 100\%$ For pH: % compliance = $\frac{\text{experimental value}}{\text{minimum limit value}} \times 100$ Since WHO and NSDWQ limits for pH are the same (i.e. 6.5 - 8.5); \therefore WHO % compliance = NSDWQ % compliance But minimum limit value = 6.5Experimental value for $W_1 = 5.85$, Experimental value for $W_2 = 5.32$ Experimental value for $W_3 = 5.01$ $\therefore \text{ WHO\% compliance for } W_1 = \text{NSDWQ \% compliance for } W_1$ $= \frac{5.85}{6.5} \times 100 = 90\%$ WH0% compliance for W₂ = NSDWQ % compliance for W₂ = $\frac{5.32}{6.5} \times 100 = 81.90\%$ WH0% compliance for W_3 = NSDWQ % compliance for W_3 $=\frac{5.01}{65} \times 100 = 77\%$

Colour :

% compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$

Since WHO and NSDWQ limits for colour are the same (i.e. 15 Pt – Co); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 15 Pt/Co Experimental value for W₁ = 13.0 Pt/Co, Experimental value for W₂ = 11.10 Pt/Co Experimental value for W₃ = 11.50 Pt/Co \therefore WHO% compliance for W₁ = NSDWQ % compliance for W₁ $= \frac{15}{13.0} \times 100 = 115 \approx 100\%$ WHO% compliance for W₂ = NSDWQ % compliance for W₂ $= \frac{15}{11.10} \times 100 = 135 \approx 100\%$

WHO% compliance for W₃ = NSDWQ % compliance for W₃ = $\frac{15}{100} \times 100 = 130 \approx 100$

$$= \frac{15}{11.5} \times 100 = 130 \approx 100\%$$

For Electrical Conductivity (EC): % compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Since WHO and NSDWQ limits for conductivity are the same (i.e. $1000\mu s/cm$); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = $1000\mu s/cm$ Experimental value for W₁ = $17 \ \mu s/cm$, Experimental value for W₂ = $16.80\mu s/cm$ Experimental value for W₃ = $17.30\mu s/cm$ \therefore WHO% compliance for W₁ = NSDWQ % compliance for W₁ $= \frac{1000}{17} \times 100 = 5882 \approx 100\%$ WHO% compliance for W₂ = NSDWQ % compliance for W₂ $= \frac{1000}{16.80} \times 100 = 5952 \approx 100\%$ WHO% compliance for W₃ = NSDWQ % compliance for W₃ $= \frac{1000}{17.30} \times 100 = 5780 \approx 100\%$

For Turbidity:

% compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Since WHO and NSDWQ limits for turbidity are the same (i.e. 5NTU); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 5 *NTU* Experimental value for W₁ = 4 *NTU*, Experimental value for W₂ = 4.05 *NTU* Experimental value for W₃ = 4.50 *NTU* \therefore WHO% compliance for W₁ = NSDWQ % compliance for W₁ $= \frac{5}{4} \times 100 = 125 \approx 100\%$

WHO% compliance for W₂ = NSDWQ % compliance for W₂
=
$$\frac{5}{4.05} \times 100 = 123 \approx 100\%$$

WHO% compliance for W₃ = NSDWQ % compliance for W₃
= $\frac{5}{4.50} \times 100 = 111 \approx 100\%$

Total Suspended Solid (TSS): % compliance = $\frac{\text{maximum limit value}}{\text{maximum limit value}} \times 100$ experimental value Since WHO and NSDWQ limits for TSS are the same (i.e. 50mg/l); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 50 mg/lExperimental value for $W_1 = 3 mg/l$, Experimental value for $W_2 = 4mg/l$ Experimental value for $W_3 = 4.48mg/l$ \therefore WHO% compliance for W₁ = NSDWQ % compliance for W₁ $= \frac{50}{3} \times 100 = 1666 \approx 100\%$ WHO% compliance for W₂ = NSDWQ % compliance for W₂ $= \frac{50}{4} \times 100 = 1250 \approx 100\%$ WHO% compliance for W₃ = NSDWQ % compliance for W₃ $= \frac{50}{4\,48} \times 100 = 1116 \approx 100\%$ Total Dissolved Solid (TDS) % compliance = $\frac{\text{maximum limit value}}{\frac{\text{experimental value}}{\text{experimental value}}} \times 100$ Note: WHO and NSDWQ limits for TDS are not the same; \therefore WHO standard for TDS = 250mg/l, and NSDWQ standard for TDS = 100mg/lWHO Maximum limit value = 250 mg/lNSDWQ Maximum limit value = 100 mg/lExperimental value for $W_1 = 11.05 mg/l$, Experimental value for $W_2 = 12.50 mg/l$ Experimental value for $W_3 = \frac{12.78mg}{l}$ tental value for $W_3 = 12.78 mg/l$ **Solving for the percentage compliance of W₁** WH0% compliance = $\frac{250}{11.05} \times 100 = 2262 \approx 100\%$ NSDWQ% compliance = $\frac{100}{11.05} \times 100 = 904 \approx 100\%$ **Solving for the percentage compliance of W₂** WH0% compliance = $\frac{250}{12.50} \times 100 = 2000 \approx 100\%$ NSDWQ% compliance = $\frac{100}{12.50} \times 100 = 800 \approx 100\%$ **Solving for the percentage compliance of W₃** WH0% compliance = $\frac{250}{12.78} \times 100 = 1956 \approx 100\%$ NSDWQ% compliance = $\frac{100}{12.78} \times 100 = 782 \approx 100\%$

For Phosphate:

% compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Since WHO and NSDWQ limits for phosphate are the same (i.e. 5mg/l); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 5mg/lExperimental value for W₁ = 1.78mg/lExperimental value for W₂ = 4.85mg/lExperimental value for W₃ = 5.45mg/l \therefore WHO% compliance for W₁ = NSDWQ % compliance for W₁ $= \frac{5}{1.78} \times 100 = 281 \approx 100\%$

WHO% compliance for W_2 = NSDWQ % compliance for W_2 $= \frac{5}{4.85} \times 100 = 103 \approx 100\%$ WHO% compliance for W₃ = NSDWQ % compliance for W₃ $=\frac{5}{5.45} \times 100 = 91.7\%$ For Iron (Fe): % compliance = $\frac{\text{maximum limit value}}{1}$ $\times 100$ experimental value Since WHO and NSDWQ limits for Fe are the same (i.e. 0.3mg/l); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 0.3mg/lExperimental value for $W_1 = 0.46mg/l$ Experimental value for $W_2 = 2.40 mg/l$ Experimental value for $W_3 = 3.50 mg/l$ \therefore WHO% compliance for W_1 = NSDWQ % compliance for W_1 WH0% compliance for W₂ = NSDWQ % compliance for W₂ = $\frac{0.3}{0.46} \times 100 = 65.2\%$ = $\frac{0.3}{2.40} \times 100 = 12.5\%$ WHO% compliance for $W_3 = NSDWQ$ % compliance for W_3 $=\frac{0.3}{3.50}\times 100=8.57\%$ For Copper (Cu): % compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Since WHO and NSDWQ limits for Cu are the same (i.e. 1.0mg/l); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 1.0mg/lExperimental value for $W_1 = 1.50 mg/l$ Experimental value for $W_2 = 2.50 mg/l$ Experimental value for $W_3 = 2.72 mg/l$ \therefore WHO% compliance for W_1 = NSDWQ % compliance for W_1 $= \frac{1.0}{1.5} \times 100 = 66.70\%$ WHO% compliance for W₂ = NSDWQ % compliance for W₂ $=\frac{\bar{1.0}}{2.50}\times 100 = 40\%$ WH0% compliance for W₃ = NSDWQ % compliance for W₃ = $\frac{1.0}{2.72} \times 100 = 36.80\%$

For Chromium (Cr^{6+}): % compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Since WHO and NSDWQ limits for Cr^{6+} are the same (i.e. 0.05mg/l); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 0.05mg/lExperimental value for $W_1 = 0.58mg/l$ Experimental value for $W_2 = 0.62mg/l$ Experimental value for $W_3 = 0.665mg/l$ \therefore WHO% compliance for $W_1 = NSDWQ$ % compliance for W_1 $= \frac{0.05}{0.58} \times 100 = 8.60\%$ WHO% compliance for W₂ = NSDWQ % compliance for W₂ $= \frac{0.05}{0.62} \times 100 = 8.06\%$ WHO% compliance for W₃ = NSDWQ % compliance for W₃ $= \frac{0.05}{0.65} \times 100 = 7.50\%$

For Cadmium (Cd):

% compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Since WHO and NSDWQ limits for Cd are the same (i.e. 0.003 mg / l); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 0.003 mg / lExperimental value for W₁ = 0.022 mg / lExperimental value for W₂ = 0.136 mg / lExperimental value for W₃ = 0.251 mg / l \therefore WHO % compliance for W₁ = NSDWQ % compliance for W₁ $= \frac{0.003}{0.022} \times 100 = 13.60\%$

WHO % compliance for
$$W_2 = NSDWQ$$
 % compliance for W_2

$$= \frac{0.003}{0.136} \times 100 = 2.21\%$$
WHO % compliance for $W_3 = NSDWQ$ % compliance for W_3

$$= \frac{0.003}{0.251} \times 100 = 1.20\%$$

For Lead (Pb):

% compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Since WHO and NSDWQ limits for Pb are the same (i.e. 0.01 mg / l); \therefore WHO % compliance = NSDWQ % compliance But maximum limit value = 0.01 mg / lExperimental value for W₁ = 0.045 mg / lExperimental value for W₂ = 0.095 mg / lExperimental value for W₃ = 0.113 mg / l \therefore WHO % compliance for W₁ = NSDW Q % compliance for W₁ $= \frac{0.01}{0.045} \times 100 = 22.2\%$ WHO % compliance for W₂ = NSDWQ % compliance for W₂ $= \frac{0.01}{0.095} \times 100 = 10.5\%$ WHO % compliance for W₃ = NSDWQ % compliance for W₃ $= \frac{0.01}{0.113} \times 100 = 8.90\%$

For Manganese (Mn): % compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Note: WHO and NSDWQ limits for Mn are not the same; \therefore WHO standard for Manganese = 0.1 mg / l, and NSDWQ standard for Manganese = 0.2 mg / lWHO Maximum limit value = 0.1 mg / l

NSDWO Maximum limit value = 0.2 mg / lExperimental value for $W_1 = 1.1 mg / l$, Experimental value for $W_2 = 3.60 mg / l$ Experimental value for $W_3 = 3.95 mg / l$ tal value for $W_3 = 3.95 mg /l$ Solving for the percentage composition of the percentage comp compliance of W₁ compliance of W₂ compliance of W₃ For Sulphate (SO₄): % compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Note: WHO and NSDWQ limits for sulphate are not the same; : WHO standard for sulphate = 250 mg / l, and NSDWO standard for sulphate = 100 mg / lWHO Maximum limit value = 250 mg / lNSDWQ Maximum limit value = 100 mq / lExperimental value for $W_1 = 11 mg / l$, Experimental value for $W_2 = 16 mg / l$ Experimental value for $W_3 = 19 mg / l$ Solving for the percentage compliance WHO% compliance = $\frac{250}{11} \times 100 = 2272 \approx 100\%$ NSDWQ % compliance = $\frac{100}{11} \times 100 = 909.1 \approx 100\%$ Solving for the percentage compliance WHO% compliance = $\frac{250}{16} \times 100 = 1562.50 \approx 100\%$ NSDWQ % compliance = $\frac{100}{16} \times 100 = 625 \approx 100\%$ Solving of W₁ Solving of W₂ lvingforthepercentagecomplianceWHO% compliance $\frac{250}{19} \times 100 = 1315.8 \approx 100\%$ NSDWQ % compliance $\frac{100}{19} \times 100 = 526.3 \approx 100\%$ Solving of W₃ For Nitrate: % compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Note: WHO and NSDWQ limits for Nitrate are not the same; \therefore WHO standard for Nitrate = 40 mg / l, and NSDWQ standard for Nitrate = 50mg/lWHO Maximum limit value = 40 mg / lNSDWQ Maximum limit value = 50 mq / lExperimental value for $W_1 = 0.60 mg / l$, Experimental value for $W_2 = 0.78 mg / l$ Experimental value for $W_3 = 0.885 mg / l$ compliance ofW₁ Solving for the percentage

WHO% compliance = $\frac{40}{0.60} \times 100 = 6666.67 \approx 100\%$ NSDWQ % compliance = $\frac{50}{0.60} \times 100 = 8333.33 \approx 100\%$ Solving for the percentage compliance of W₂ WHO% compliance = $\frac{40}{0.78} \times 100 = 1528.20 \approx 100\%$ NSDWQ % compliance = $\frac{50}{0.78} \times 100 = 6410.30 \approx 100\%$ Solving for the percentage compliance of W₃ WHO% compliance = $\frac{40}{0.885} \times 100 = 4519.80 \approx 100\%$ NSDWQ % compliance = $\frac{50}{0.885} \times 100 = 5649.72 \approx 100\%$

For Nitrite:

% compliance = $\frac{\text{maximum limit value}}{\text{experimental value}} \times 100$ Note: WHO and NSDWQ limits for Nitrite are not the same; \therefore WHO standard for Nitrite = 0.91 mg /l, and NSDWQ standard for Nitrite = 0.20 mg / lWHO Maximum limit value = 0.91 mg / lNSDWQ Maximum limit value = 0.20 mg / lExperimental value for $W_1 = 2.0 mg / l$, Experimental value for $W_2 = 4.0 mg / l$ Experimental value for $W_3 = 4.8 mg / l$ Solving for the percentage WHO% compliance = $\frac{0.91}{2.0} \times 100 = 45.50\%$ NSDWQ % compliance = $\frac{0.2}{2.0} \times 100 = 10\%$ Solving for the percentage compliance of W₁ SolvingforthepercensesWHO% compliance $\frac{0.91}{4.0} \times 100 = 22.75\%$ NSDWQ % compliance $\frac{0.2}{4.0} \times 100 = 5.0\%$ Columnforthepercentage compliance W₂ Solving for the percentage o WHO% compliance = $\frac{0.91}{4.8} \times 100 = 18.96\%$ NSDWQ % compliance = $\frac{0.2}{4.8} \times 100 = 4.17\%$ compliance of W₃

The different percentage compliances of the different parameters both for WHO and NSDWQ standards are represented in Figures 3 to 8 respectively.

Figure 4: Percentage Compliance of Physical Parameters of W₂ with WHO and NSDWQ Standards

Figure 5: Percentage Compliance of Physical Parameters of W₃ with WHO and NSDWQ Standards

Figure 7: Percentage Compliance of Chemical/heavy metal Parameters of W₂ with WHO and NSDWQ standards

Figure 8: Percentage Compliance of Chemical/heavy metal Parameters of W₃ with WHO and NSDWQ standards

V. DISCUSSION

The results and comparison of the sample parameters with the World Health Organization (WHO) and the Nigerian Standard for Drinking Water Quality (NSDWQ) were presented in Tables (4 to 6), the percentage compliance represented in Figures (3 to 8), with bar charts were shown in Table 4.5 for easy comparison.

Parameter	Standards La			Laboratory findings			Varia	,		% comp	liance			Observation	Remarks	Recommenda	
	WHO NSD W. W. W						nce									tion	
	WHO	NSD	W ₁	W ₂	W				WHO]	NSDWC)				
	L	wQ			3			W ₁	W ₂	W;	W ₁	W ₂	W;				
A. Physical characteristics													100	1		T''	
(Pt-Co)	15	15	13	0	11. 5	11.1- 13	U	100	100	100	100	100	100	Within limits	Acceptable	Fit for consumption	
TSS (mg/l)	50	50	3	4	4.4 8	3- 4.48	0	100	100	100	100	100	100	Within limits	Safe for use	Does not require treatment	
рН	6.5- 8.5	6.5- 8.5	5.85	5.32	5.0 1	5.01- 5.85	<0.65 -1.49	90	81.9	77	90	81.9	77	Slightly acidic	Lower than the minimum limits of WHO & NSDWQ. Not safe.	Treat before use	
Turbidity (NTU)	5	5	4.0	4.05	4.5	4.0- 4.5	0	100	100	100	100	100	100	Within limits	Acceptable	No treatment	
Temp. (°C)	20- 30	20- 30	27.4	27.6	28	27.4- 28.0	0	100	100	100	100	100	100	Within limits	Acceptable	No treatment	
EC (µs/cm)	1000	1000	17	16.8	17. 3	16.8- 17.3	0	100	100	100	100	100	100	Within limits	No health implication	No treatment	
TDS (mg/l)	250	100	11.05	12.5	12. 78	11.05- 12.78	0	100	100	100	100	100	100	Within limits	Highly palatable	No treatment	
B. Cl	iemical/h	ieavy m	etal chara	acteristic	s (All ı	inits are in	i mg/l, un	less state	d otherw	ise)							
Phosphate	5	5	1.78	4.85	5.4 5	1.78- 5.45	>0.45	100	100	91.7	100	100	91.7	W; is above limits, while W ₂ & W ₁ are within limits	W2 & W1 is acceptable for use. W3 is not safe for use.	Treatment of W ₃ . W ₂ may also be treated as it is little below the set limit	
Fe	0.3	0.3	0.46	2.40	3.5 03	0.46- 3.5	>0.16 -3.2	65.2	12.5	8.75	65.2	12.5	8.75	Above the required limit	Not safe for consumption	Treat water	
Mn	0.1	0.2	1.1	3.60	3.9 5	1.1- 3.95	>3.4 -3.85	9.1	2.78	2.53	18.2	5.65	5.06	Above the required limit	Not safe for consumption	Treat water	

Table 4.5: Comparison of laboratory analysis results with WHO and NSDWQ standards, observations, remarks and recommendations

 Table 7 continues

						Ta	ble 7 co	ontinue	s		•••••						
Sourc	e of	Table	(7): La	iborat	ory an	alysi	s (2012); WH() stan	dards (Garg, 2	2007)	and NS	SDWQ	standa	rds (S	SON,
		~~						20)07)								
NO3	40	50	0.00	0.78	0.885	0.0	- 0.885	0	100	100	100	100	100	100	Within lo	nits	Safe fo
							use	Keq	tire no t	reatment							
NO2	0.91	0.2	2.0	4.0	4.8	2.0	-4.8>1.0	9-4.0	45.5	22.7	18.9	45.5	5	4.17	Above th	e requi	ired limi
							No	t safe for	consum	ptionTrea	t water						
SO_4^()	2-)	250	100	11	16	19	11	190	100	100	100	100	100	100	Within li	nits	Safe fo
							<u>и</u> 56	Keq	uire no t	reatment							
Cr6+	0.0	5 0.0	5 0.5	8 0.0	52 0.0	565 (0.58 - 0.6	65 >0	.53 - 0.0	515 8.6	_ 8.06	7.5	8.6	8.06	7.5	Abo	ie the
						requi	red limit	Not safe	for con	sumption	lireat wat	er					
Çd	0.0	03 0.0	03 0.0	22 0.1	36 0.2	15 ().022 – 0.	25 >0	019 - 0	.247 13.0	2.21	1.2	13.6	2.21	1.2	Aba	ie the
						requi	red limit	Not safe	for con	sumption	Treat wat	er					
Pb.	0.0	1 0.0	1 0.0	45 0.0	95 0.1	13 (0.045 - 0.1	113 >0	035 – 0	.103 22.2	10.5	8.9	22.2	10.5	8.9	Aba	ie the
						requi	red limit	Not safe	for con	sumption.	Treat wat	er					
							Bacte	riologica	ıl/biolog	ical chara	acteristics	5					
BODS	50	50	0.83	1.5	2.4	0.8	3 – 2.4	0	-	-		-			Within li	nit	Safe fo
							U58	Treati	nent not	necessary	1						
D0 .	NS	NS	7.2	6.5	6.03	6.0	3 - 7.2	•	-	-		-		-	DO level 1	reduces	toward
				th	ie dumps	ite	Moderate	level of a	issolved	oxygenTre	atment n	ot nece	ssary				
								C	DD								
								80									
								80									
								1	22								
								1.	4								
								4.	4								
								3.	84								
								1.33 -	3.84								
		0	-	-	-	-	-	-	With	in limit	Safe fi	or use	No tre	atment r	equired		
									ТВС								
(Cfu/10	(0ml)	3	10	2	2	3	2	3 Sligh	t contan	vination	-			-			Slight
					Contam	iinatio	n of water	Not safe	for con	sumption	Treatmen	t requir	ed				-
TCC	(Cfu/l	00ml)0	0	1	3		3 1	-3 +3	indicati	ing water o	ontamina	ition-			-		
		Contan	uination o	fwater	by anthro	opoge	nic activiti	iesIndica	es prese	nce of ha	mful bac	teria	Water sh	ould be	treated be	fore us	6

VI. CONCLUSION

The study revealed that the concentration of waste materials in dump sites systematically pollutes soil and groundwater over time. The impact of such pollution as determined from the study implied that the contamination of the groundwater was more dependent on proximity to the dump site. The extent of the pollution is attributed to the influence of topography, type and state of waste disposal systems and more so, the hydrogeology of the area. The contamination of water with high levels of chemical and bacteriological contaminants poses health problems such as typhoid fever, and worm infestation. Coliform and total bacteria count indicated microbial pollution of the groundwater by anthropogenic activities. The presence of Fe, Cd, Mn, Pb and Cr in detectable quantities indicated high toxicity level in the groundwater and therefore posed serious environmental risk to life. It is worthy to note however, that not only the study area had been polluted by the indiscriminate dumping of wastes, but areas within the humid tropics of Nigeria that suffer the impact of groundwater and surface water pollution. To combat this menace, orientation should be given not just to the inhabitants of the region but also to the general public, while government should provide a means of efficient waste disposal system and recycling machines. The government on focus their resources should be channeled towards combating obnoxious odour within the sites. This would not only

help protect our ecosystem but also provide jobs for the populace as well as preserving the aesthetic values of our water resources planning and development.

REFERENCES

- Abdulaziz M. (2003): Spatial variation in water quality in Nguru Urban. Unpublished MSc Project. University of Maiduguri, Nigeria.
 Adewole A.T (2009): Waste management towards sustainable development in Nigeria: A case study of Lagos state. Int. NGO J. 4(4):
- [2]. Fractioner in (2007): White management to varias sustainable development in Figure 11 case study of Edgos state. In: 1000 st. (1): pp.173-179.
 [3]. Dauda, A.M. (1993): A Comprehensive approach in water resources management for the 21st century, Environmental Bullets vol.12.
- [5]. Dauda, A.M. (1995): A Comprehensive approach in water resources management for the 21st century, Environmental Bullets vol.12.
 Nigeria.
 [4]. Care S. K. (2007): Hudgels and Water Decourse Environmental Publisher Net Search New Delbison 907.
- [4]. Garg .S. K (2007): Hydrology and Water Resources Engineering, 14th Ed. Pub. by Khanna Publisher, Nai Sarak, New Delhi. pp. 897 907.
- [5]. Ikem.A., O. Osibanjo, M.K.C. Sridhar, and A. Sobande., (2002): 'Evaluation of Groundwater Quality Characteristics near Two waste Sites in Ibadan and Lagos, Nigeria', Water, Air, and Soil Poll, 2002, 140: pp.307–333. Kluwer Academic Publishers, the Netherlands.
- [6]. ISEPA (2012): Imo State Environmental Protection Agency Laboratory Analysis of Water Sample, Prefab, Aladinma Owerri.
- [7]. Lee G.F and Lee J.A., (2005): Municipal solid waste landfills water quality issues, Water Encyclopaedia: Water Quality and Resource Development, John Wiley. NJ: pp.163-169.
- [8]. Longe .E.O. and M.R. Balogun., (2010): Groundwater Quality Assessment near a Municipal Landfill, Lagos, Nigeria', Research J. of Applied Sci, Engr'g and Technol, 2010, 2(1): pp.39-44.
- [9]. Offodile, M.E., (2002): Groundwater study and development in Nigeria. University of Ibadan Press. Nigeria.
- [10]. Standard Organization of Nigeria (SON) (2007): The Nigerian Standard for Drinking Water Quality (NSDQW); Nigerian Industrial Standard (NIS) 554: p. 30.